Утверждена академическим советом программы (протокол от 11.10.2021, № 2.3-09/1110-01)

Федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук

ПРОГРАММА

подготовки к экзамену для поступающих на образовательную программу магистратуры «Финансовые технологии и анализ данных», направление подготовки 01.04.02 Прикладная математика и информатика

по дисциплине «Высшая математика»

Академический руководитель программы

Масютин А.А.

Предварительные критерии оценивания

- 0-2 Абитуриентом предложены идеи решения задачи. Приведено решение без объяснений, выкладок или доказательств.
 - 3-5 Приведено решение, но оно не верно или не достаточно объяснено.
- 6-7 Правильное решение, но допущены ошибки или неточности в доказательстве. Нет реализации алгоритма, не разобраны все случаи или часть из них не доказана или разобрана с ошибками. Не оптимальное решение.
- $8-10-\Pi$ равильное решение при допущенных описках или неточностях. Апелляция оценок 8 и 9 не рассматривается.

Уточненные критерии проверки по каждой задаче публикуются одновременно с началом периода подачи апелляций.

В решении должны присутствовать ссылки на теоретические факты из программы с указанием точных формулировок теорем, которые применяются. Если утверждение, на которое ссылается абитуриент, не содержится в программе вступительных испытаний, то его необходимо доказать в работе.

Все выкладки должны быть равносильными преобразованиями; каждый случай оформлен отдельно.

Номер задания должен четко выделяться на фоне остального текста.

Все ответы должны быть перенесены в чистовик. Черновики не проверяются членами экзаменационной комиссии.

Перечень и содержание тем для подготовки

1. Линейная алгебра

- (а) Векторы, матрицы и действия с ними. Линейная зависимость системы векторов. Базис линейного пространства. Скалярное произведение.
- (b) Определитель квадратной матрицы. Вычисление определителей. Разложение определителя по строке и по столбцу.
- (с) Транспонированная матрица. Обратная матрица. Ранг матрицы. Специальные виды матриц.
- (d) Системы линейных уравнений. Метод Крамера. Метод Гаусса. Фундаментальная система решений.
- (е) Собственные числа и собственные векторы матрицы. Собственные и инвариантные подпространства.
- (f) Квадратичные формы. Матрица квадратичной формы. Условие положительной (отрицатель- ной) определенности квадратичной формы. Критерий Сильвестра. Индексы инерции квадратичных форм.

2. Математический анализ

- (a) Множества. Операции над множествами. Числовые множества. Грани множеств. Множества в Rn. Соответствие множеств. Счетные и несчетные множества.
- (b) Числовые последовательности и пределы. Свойства сходящихся последовательностей. При- знаки существования предела. Первый и второй замечательные пределы.
- (с) Функции одной переменной. Производные. Исследование и построение графика функции.
- (d) Функции многих переменных. Частные производные. Полный дифференциал. Градиент функции. Производная по направлению. Матрица Гессе. Безусловный экстремум функции многих переменных. Необходимые и достаточные условия экстремума функции многих переменных. Задача на условный экстремум. Метод множителей Лагранжа. Условия дополняющей нежесткости.

- (e) Понятие о квадратичных формах. Выпуклые функции и множества. Оптимизация при наличии ограничений. Функция Лагранжа, ее стационарные точки. Метод множителей Лагранжа.
- (f) Неопределенный интеграл и его исчисление. Определенный интеграл. Несобственные интегралы. Кратные интегралы и их исчисление.
- (g) Понятие ряда и его сходимости. Свойства сходящихся рядов. Признаки сходимости положительных рядов. Знакопеременные ряды. Функциональные ряды. Равномерная сходимость функционального ряда. Степенные ряды. Радиус сходимости степенного ряда. Интегрирование и дифференцирование степенных рядов. Ряды Тейлора и Маклорена.

3. Дифференциальные уравнения

- (a) Дифференциальные уравнения первого порядка, разрешенные относительно производной. Понятие решения. Поле направлений. Изоклины. Интегральные кривые. Задачи Коши.
- (b) Уравнения в полных дифференциалах. Метод замены переменных. Интегрирующий множитель. Уравнения Бернулли и Риккати.
- (c) Линейные дифференциальные уравнения 1-го порядка. Метод вариации постоянной. Линейные дифференциальные уравнения *n*-го порядка.
- (d) Однородные линейные дифференциальные уравнения с постоянными коэффициентами. Характеристическое уравнение. Устойчивость решения по Ляпунову.
- (е) Неоднородные линейные дифференциальные уравнения с постоянными коэффициентами и с правой частью в виде квазимногочлена.

4. Комбинаторика

- (а) Основные правила комбинаторики. Правило подсчета количества комбинаторных объектов. Принцип Дирихле. Примеры.
- (b) Множества. Круги Эйлера, операции на множествах. Формула включений и исключений. Примеры.
- (с) Сочетания. Размещения, перестановки и сочетания. Бином Ньютона. Треугольник Паскаля. Сочетания с повторениями.

5. Теория вероятностей и математическая статистика

- (а) Основные понятия теории вероятностей. Случайные события и случайные величины. Функция плотности распределения. Совместное распределение нескольких случайных величин. Условные распределения.
- (b) Характеристики распределений случайных величин (математическое ожидание, дисперсия, ковариация). Свойства математического ожидания и дисперсии. Условное математическое ожидание. Распределение дискретных случайных величин (биномиальное, геометрическое, гипергеометрическое, распределение Пуассона).
- (c) Нормальное распределение и связанные с ним χ^2 -распределение, основные свойства.
- (d) Генеральная совокупность и выборка. Выборочное распределение и выборочные характеристики (среднее, дисперсия, ковариация, коэффициент корреляции).
- (е) Статистическое оценивание. Точечные оценки. Линейность, несмещенность, эффективность и состоятельность оценок. Интервальные оценки, доверительный интервал. Метод моментов и метод максимального правдоподобия для точечной оценки параметров распределения.
- (f) Статистические выводы и проверка статистических гипотез. Ошибки 1-го и 2-го рода. Уровень доверия и проверка значимости.
- (g) Линейная регрессионная модель для случая одной объясняющей переменной. Метод наименьших квадратов (МНК). Теорема Гаусса-Маркова. Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его

следствия. Множественная линейная регрессия. Проверка статистических гипотез о статистической значимости коэффициентов регрессии (t-тест) и всей регрессии в целом (F-тест). Проверка гипотез о линейном ограничении на коэффициенты регрессии.

6. Дискретная математика

- (а) Бинарные отношения и их свойства (рефлексивность, транзитивность, симметричность). Отношение эквивалентности. Отношение порядка.
- (b) Понятия алгоритма и сложности алгоритма. Простые структуры данных: массив, список, очередь, стек, дек. Последовательный и бинарный поиск. Алгоритмы сортировки одномерного массива и оценка сложности. Представление графов в виде матрицы смежности и матрицы инцидентности, алгоритмы на графах.

Список рекомендуемой литературы

- 1. Ильин В.А., Позняк Э.Г. Линейная алгебра. Учеб. Для вузов 4-е изд. М. Наука. Физматлит, 1999-296 с.
- 2. Ильин В.А., Позняк Э.Г. Основы математического анализа. Учеб. для вузов, 7-е изд. М.: Φ ИЗ- МАТЛИТ, 2005. 648 с.
- 3. Бесов О.В. Курс лекций по математическому анализу. Учебное пособие. Ч 1,2. М.: МФТИ. 216 с.
- 4. Кудрявцев Л.Д. Математический анализ, т. 1,2. Учеб. пособие для вузов: в 2-х т. М.: ВШ, 1970.
- 5. Фихтенгольц Г.М. Основы дифференциального и интегрального исчисления, тт. 1-3. 8-е издание.- М.: ФИЗМАТЛИТ, 2003. 680 с., 864 с., 728 с.
- 6. Демидович Б.П.(редактор). Задачи и упражнения по математическому анализу для втузов Издание шестое, стереотипное. М.: Наука, 1968. 472 с. илл.
- 7. Понтрягин Л.С. Обыкновенные дифференциальные уравнения М.: Наука,1974. 331с. Изд. 4-е.
- 8. Филипов А.Ф. Сборник задач по дифференциальным уравнениям М.: Интеграл-Пресс, 1998 г. 208 стр.
- 9. Гнеденко Б.В. Курс теории вероятностей. 8-е изд., испр. и доп. Учебник. М.: «Едиториал УРСС», 2005. 448 с.
- 10. Крамер Г. Математические методы статистики М.: Мир, 1975. 648 с.
- 11. Шведов А.С. Теория вероятностей и математическая статистика 2-е изд., перераб. и доп. Москва: ГУ ВШЭ, 2005. 252, [1] с.
- 12. Шень А. Программирование: теоремы и задачи. Издательство МЦМНО, 2014.
- 13. Макаров И.А., Токмакова Л.Р. УМК "Дискретная математика". Издательский дом НИУ ВШЭ, 2014. 152 с.
- 14. Боровков А. А. Теория вероятностей. Учебное пособие для вузов второе издание (переработанное и дополненное), Москва: «Наука», 1986.
- 15. Яблонский С.В. Введение в дискретную математику. Учебное пособие для вузов второе издание (переработанное и дополненное), Москва: «Наука», 1986. 384 с.
- 16. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. Учебное пособие. 2 изд. М.: ФИЗМАТЛИТ, 2005. 368 с
- 17. Боровков А.А. Математическая статистика. М.:ФИЗМАТЛИТ, 2007.
- 18. Ивченко, Г. И., Медведев, Ю. И. Введение в математическую статистику. М.: Издательство ЛКИ. 2010
- 19. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. МЦНМО: 2000. 960 с.
- 20. Прасолов В. В. Задачи и теоремы линейной алгебры. М.: Наука, 1996. 304 с.
- 21. Магнус Я., Катышев П., Пересецкий А.. Эконометрика. Начальный курс (7-е издание). М.: Дело, 200